

La manutenzione su condizione in impianto:

"Caso pratico"

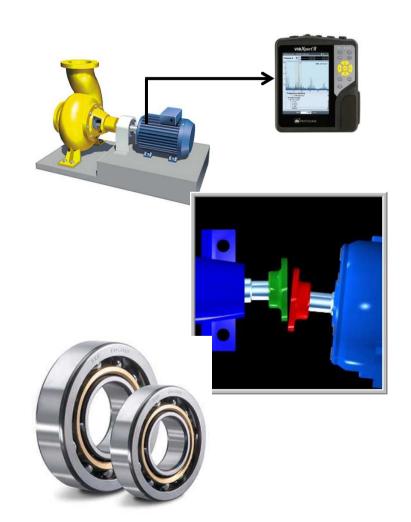
Bologna 23/06/2011 Luca Barraco

- **©** PREVISIONE DI GUASTI E AVARIE PER MACCHINE DI MEDIA CRITICITA'
- O Consapevolezza del reale stato di salute dei macchinari

• VENTILATORI

• MOTORI ELETTRICI

- PREVENIRE ROTTURE ACCIDENTALI
- EVITARE LA PROPAGAZIONE DEI GUASTI
- MANUTENZIONE PROGRAMMATA
- CONOSCERE IL REALE STATO DI SALUTE DELLA MACCHINA

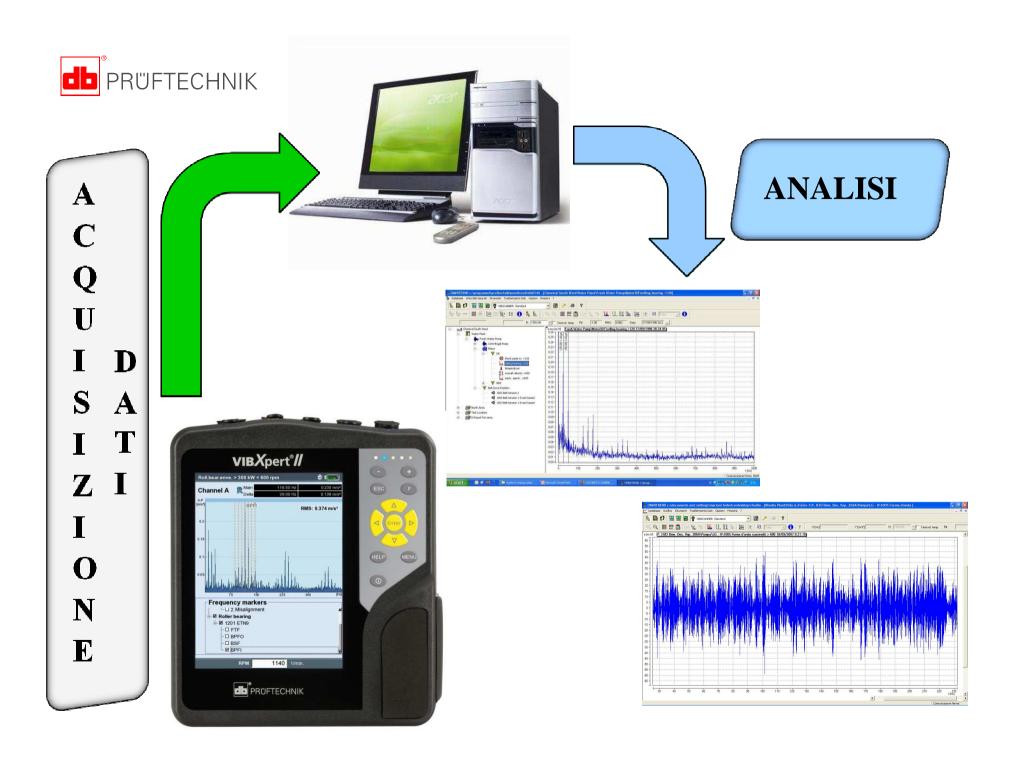


Due campagne annuali analisi vibrazionali

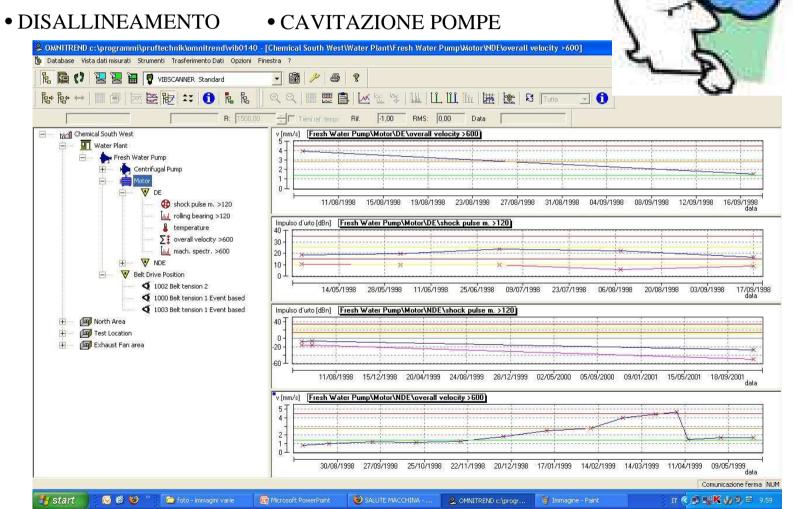
Acquisizione vibrazionali direttamente sulla macchina operante alle condizioni di regime

Analisi dati – Diagnostica anomalie

Sono state suggerite azioni correttive come sostituzione dei cuscinetti, allineamenti, bilanciature



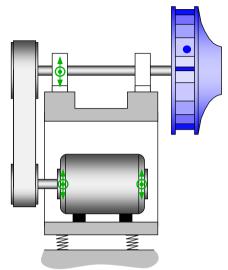
PERIODICHE ACQUISIZIONI VALORI DI VIBRAZIONI



DIAGNOSTICA

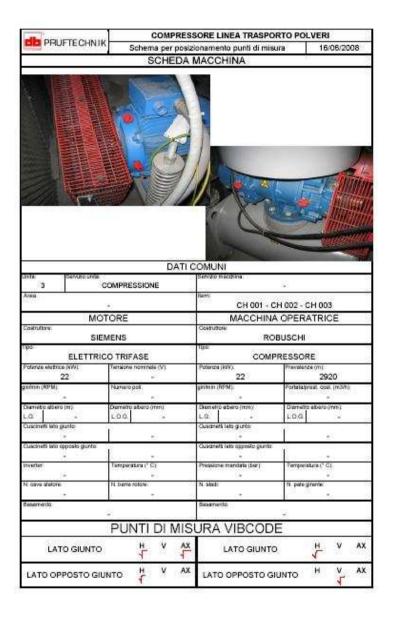
• SBILANCIAMENTO

GUASTI CUSCINETTI

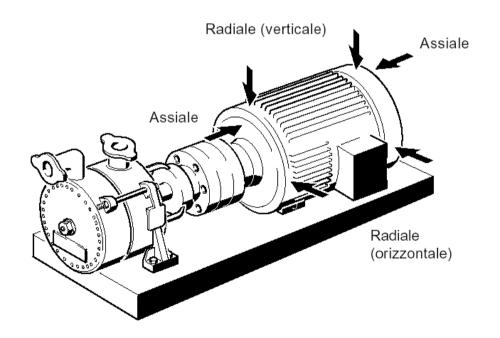


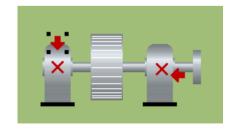
IMPIANTO

- •N ° 68 ventilatori
- •N° 1 pompa del vuoto
- •N° 3 compressori a vite
- •N° 1 pompa circolazione acqua torre
- •N° 1 motore torre evaporativa
- •N° 4 ventilatori
- •N° 3 pompe verticali
- •N° 7 pompe di circolazione acqua surriscaldata



CREAZIONE DATABASE

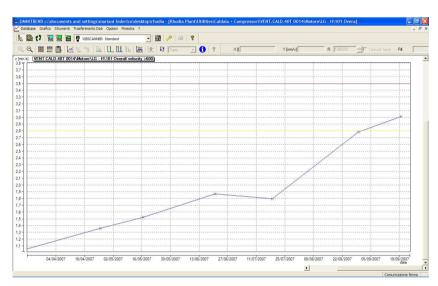

- DATI MOTORE
- DATI MACCHINA OPERATRICE
- CUSCINETTI
- TIPO DI BASAMENTO
- PUNTI DI MISURA
- TEMPERATURA DI FUNZIONAMENTO
- FOTO SPECIFICHE



SOGLIE DI ALLARME

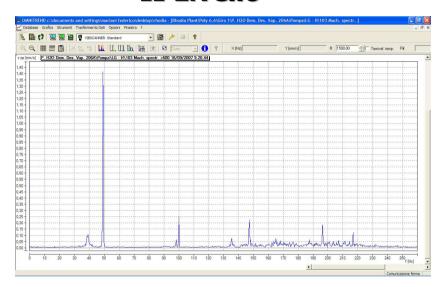
ISO 10816/3

Classe	Soglia	Valore RMS
	Pre-avvertimento	2,30 mm/s
	Avvertimento	4,50 mm/s
	Allarme	7,10 mm/s



Analisi vibrazionale

I Livello

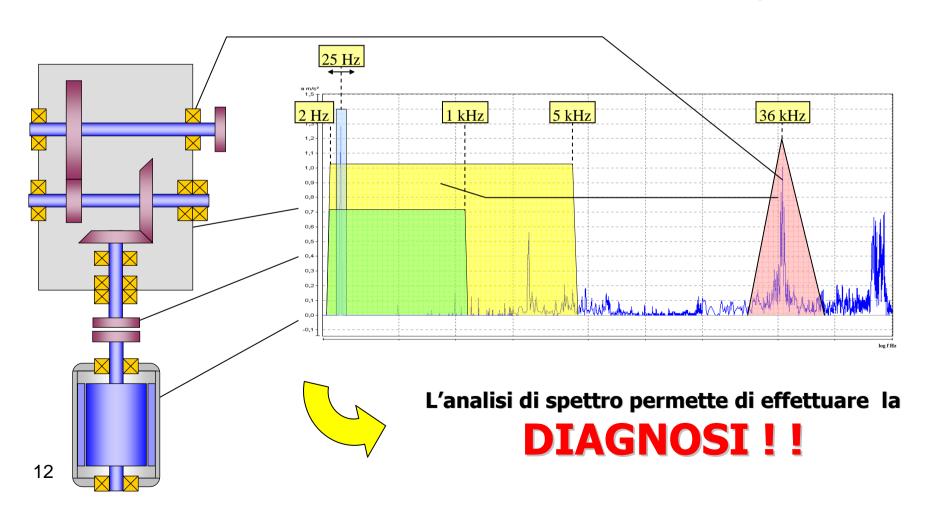


- > Valori globali di vibrazione
- Monitoraggio nel tempo di trend
- > Confronto con soglie di allarme

C'è qualcosa che non va??

II Livello

- > Spettri FFT e Spettri Envelope
- > Diagnostica avanzata dei macchinari
- > Richiede dati e competenze maggiori



Quale è il problema??

Analisi di spettro FFT

> Si basa sul fatto che a determinate tipologie di guasto corrispondono determinate modalità di vibrazione, identificate da diverse frequenze.

Report esame ultime misure

7-glu-2010 guest

Engles Tormell (Ventilated CTA 3.3 (A - a (Ventilators etc.)

Classe	Punto di misura	Compito	Valore	Unità	Soqlia	Livello +1	Codice	%
->	LG H	101 Velocità globale >600 (RMS)	2,94	mm/s	2,30	4,50	Р	28
>	LOG H	101 Velocità globale >600 (RMS)	3,34	mm/s	2,30	4,50	Р	45
	LG Ax	101 Velocità globale >600 (RMS)	8,62	mm/s	7,10		A	21
	LOG V	101 Velocità globale >600 (RMS)	3.82	mm/s	2.30	4.50	P	66

Fenice Termoli / Ventilatori CTA 3.3 / A - b / Ventilatore cta:

Classe	Punto di misura	Complto	Valore	Unità	Soqlia	Livello +1	Codice	%
->	LGH	101 Velocità globale >600 (RMS)	2,78	mm/s	2,30	4,50	P	21
	LOGH	101 Velocità globale >600 (RMS)	2,33	mm/s	2,30	4,50	Р	1
	LG Ax	101 Velocità globale >600 (RMS)	3,74	mm/s	2,30	4,50	Р	62
->	LOG V	101 Velocità globale >600 (RMS)	3.12	mm/s	2.30	4.50	P	36

Fenice Termoli / Ventilatori CTA 3.3 / B - a / Ventilatore cta:

Classe	Punto di misura	Compito	Valore	Unità	Soqlia	Livelio +1	Codice	%
-5	LGH	101 Velocità globale >600 (RMS)	3,11	mm/s	2,30	4,50	P	35
	LOGH	101 Velocità globale >600 (RMS)	3,90	mm/s	2,30	4,50	Р	70
->	LG Ax	101 Velocità globale >600 (RMS)	5,85	mm/s	4,50	7,10	w	30
~	I DG V	101 Velocità diobale >600 (RMS)	2.28	mm/s	2.20	4.50	Р	4

Fenice Termoll / Ventilatori CTA 3.3 / B - b / Ventilatore cta:

L	Classe	Punto di misura	Compito	Valore	Unità	Soqlia	Livelio +1	Codice	%
	>	LGH	101 Velocità globale >600 (RMS)	3,60	mm/s	2,30	4,50	Р	57
ı		LOGH	101 Velocità globale >600 (RMS)	4,38	mm/s	2,30	4,50	Р	90
ı		LG Ax	101 Velocità globale >600 (RMS)	3,24	mm/s	2,30	4,50	Р	41
- 1		1061	101 Volcottà globale - 600 (RMC)	2.00	m m /c		2.20	N	

Fenice Termoll / Ventilatori CTA 3.3 / C - b / Ventilatore cta:

Classe	Punto di misura	Compito	Valore	Unità	Soqlia	Livello +1	Codice	%
9	LGH	101 Velocità globale >600 (RMS)	2,65	mm/s	2,30	4,50	Р	15
	LOGH	101 Velocità globale >600 (RMS)	2,08	mm/s		2,30	N	
0	LG Ax	101 Velocità globale >600 (RMS)	2,56	mm/s	2,30	4,50	Р	11
	LOG V	101 Velocità globale >600 (RMS)	2.22	mm/s		2.30	N	

Fenice Termoli / Ventilatori CTA 3.3 / D - a / Ventilatore cta:

Classe	Punto di misura	Compito	Valore	Unità	Soqlia	Livello +1	Codice	%
>	LGH	101 Velocità globale >600 (RMS)	3,58	mm/s	2,30	4,50	Р	56
٥	LOGH	101 Velocità globale >600 (RMS)	5,12	mm/s	4,50	7,10	w	14
	LG Ax	101 Velocità globale >600 (RMS)	4,18	mm/s	2,30	4,50	Р	82
	LOGV	101 Velocità diobale >600 (RMS)	2.00	mm/s	l	2.30	N	

Fenice Termoli / Ventilatori CTA 3.3 / D - b / Ventilatore cta:

Classe	Punto di misura	Complto	Valore	Unità	Soqlia	Livelio +1	Codice	%
	LGH	101 Velocità globale >600 (RMS)	2,48	mm/s	2,30	4,50	Р	œ
>	LOG H	101 Velocità globale >600 (RMS)	3,46	mm/s	2,30	4,50	Р	50
0	LG Ax	101 Velocità globale >600 (RMS)	2,58	mm/s	2,30	4,50	Р	12
	LOG V	101 Velocità globale >600 (RMS)	1.95	mm/s		2.30	N	

Fenice Termoli / Ventilatori CTA 3.3 / E - a / Ventilatore cta:

Classe	Punto di misura	Compito	Valore	Unità	Soqlia	Livelio +1	Codice	%
9	LG H	101 Velocità globale >600 (RMS)	2,62	mm/s	2,30	4,50	Р	14
-	LOGH	101 Velocità globale >600 (RMS)	7,38	mm/s	7,10		A	4
	LG Ax	101 Velocità globale >600 (RMS)	2,10	mm/s		2,30	N	
-2	LOG V	101 Velocità globale >600 (RMS)	4.76	mm/s	4.50	7.10	w	6

* Nit ellecal de un compito di misore

Report variazione ultime misure

9-gen-2011 guest

Fenice Termoli / Ventilatori CTA 3.1 / C - b / Ventilatore ota:

Punto di misura	Compito	Valore	Valore -1	Unità	Delta	Ultimo (%)	Codice
12/05/10							
LG H	101 Velocità globale >600 (RMS)	5,69		mm/s			w
LG Ax	101 Velocità globale >600 (RMS)	3,54		mm/s			Р
LOG V	101 Velocità globale >600 (RMS)	3,50		mm/s			Р
LOG H	101 Velocità globale >600 (RMS)	2,84		mm/s			Р
30/11/10	-						
LOG H	101 Velocità globale >600 (RMS)	6,53	2,84	mm/s	3,68	130	W
LOG V	101 Velocità globale >600 (RMS)	4,69	3,50	mm/s	1,19	34	w
LG H	101 Velocità globale >600 (RMS)	4,40	5,69	mm/s	-1,29	-23	Р
I G Ax	101 Velocità globale >600 (RMS)	4.36	3.54	mm/s	0.82	23	Р

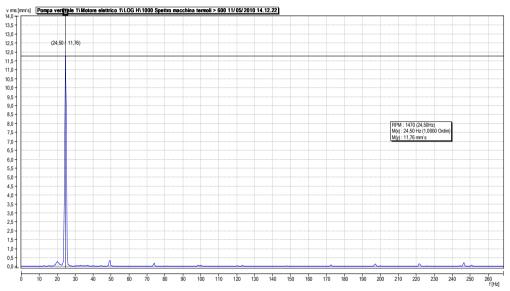
Fenice Termoli / Ventilatori CTA 3.1 / B - b / Ventilatore ota:

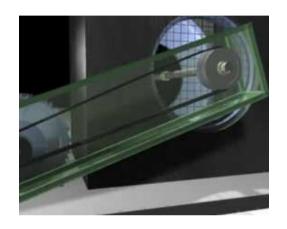
remos remos rem	matori ora e. i / D - D / Volitilatoro eta.						
Punto di misura	Compito	Valore	Valore -1	Unità	Delta	Ultimo (%)	Codice
31/05/10							
LOG V	101 Velocità globale >600 (RMS)	9,53		mm/s			A
LOG H	101 Velocità globale >600 (RMS)	9,02		mm/s			A
LG H	101 Velocità globale >600 (RMS)	4,63		mm/s			W
LG Ax	101 Velocità globale >600 (RMS)	2,94		mm/s			Р
30/11/10							
LGH	101 Velocità globale >600 (RMS)	5,78	4,63	mm/s	1,16	25	W
LOG V	101 Velocità globale >600 (RMS)	5,34	9,53	mm/s	-4,19	-44	W
LG Ax	101 Velocità globale >600 (RMS)	5,08	2,94	mm/s	2,14	73	W
LOGH	101 Velocità globale >600 (RMS)	4 41	9.02	mm/s	-4.61	-51	P

Fenice Termoli / Ventilatori CTA 3.1 / B - a / Ventilatore ota:

renice termon/vent	liatori CTA 3.1 / B - a / Ventilatore ota:						
Punto di misura	Compito	Valore	Valore -1	Unità	Delta	Ultimo (%)	Codice
31/05/10							
LG Ax	101 Velocità globale >600 (RMS)	3,25		mm/s			Р
LOG H	101 Velocità globale >600 (RMS)	2,33		mm/s			Р
LOG V	101 Velocità globale >600 (RMS)	1,23		mm/s			N
LGH	101 Velocità globale >600 (RMS)	1,16		mm/s			N
30/11/10							
LOG V	101 Velocità globale >600 (RMS)	10,15	1,23	mm/s	8,91	724	Α
LOG H	101 Velocità globale >600 (RMS)	9,09	2,33	mm/s	6,75	289	A
LGH	101 Velocità globale >600 (RMS)	5,39	1,16	mm/s	4,23	365	W
I G Ax	101 Velocità globale >600 (RMS)	3.33	3.25	mm/s	0.08	2	P

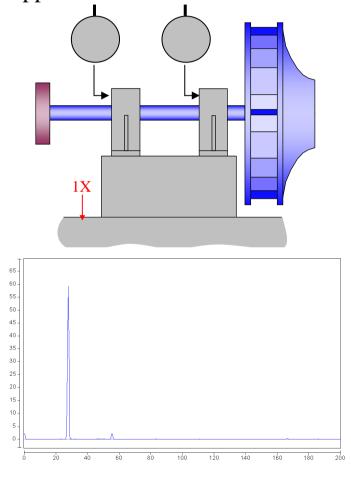
Fenice Termoli / Ventilatori CTA 3.1 / C - a / Ventilatore ota:

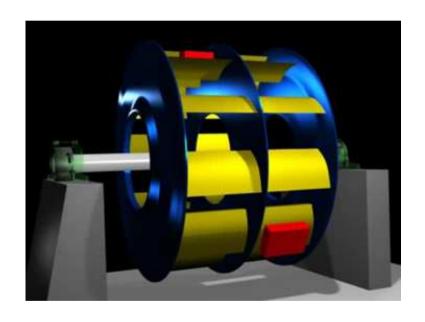

Punto di misura	Compito	Valore	Valore -1	Unità	Delta	Ultimo (%)	Codice
12/05/10							
LG Ax	101 Velocità globale >600 (RMS)	5,29		mm/s			w
LOG H	101 Velocità globale >600 (RMS)	3,07		mm/s			Р
LOG V	101 Velocità globale >600 (RMS)	2,78		mm/s			Р
LG H	101 Velocità globale >600 (RMS)	2,64		mm/s			Р
30/11/10							
LG Ax	101 Velocità globale >600 (RMS)	4,92	5,29	mm/s	-0,38	-7	W
LOG H	101 Velocità globale >600 (RMS)	4,57	3,07	mm/s	1,50	49	W
LG H	101 Velocità globale >600 (RMS)	3,92	2,64	mm/s	1,28	49	Р
LOG V	101 Velocità globale >600 (RMS)	2.97	2.78	mm/s	0.19	7	Р


Definizione codici allarme:
A - Allarme W - Avvertimento P - Preavvertimento N - Normale
t - Livello aumentato rispetto valore precedente + - Vicino ad una soglia di allarme ! - Minimo al di sopra di
una soglia di allarme

* Più allarmi da un compito di misura

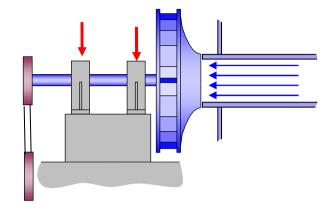
Gruppo motore ventilatore trasmissione a cinghia

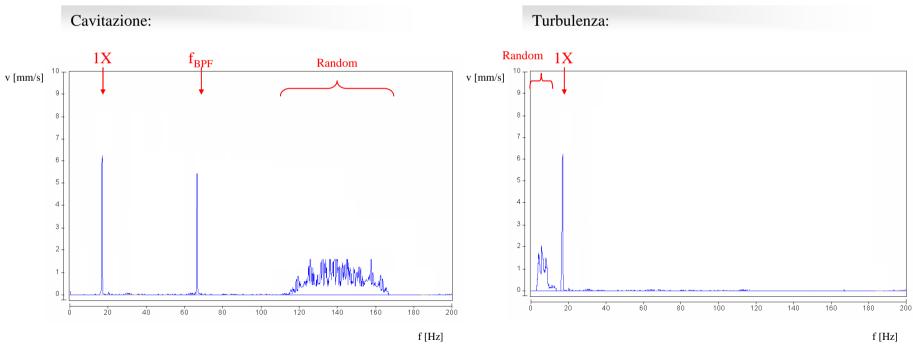

- SBILANCIAMENTO
- DISALLINEAMENTO CINGHIA



Gruppo motore ventilatore trasmissione a cinghia

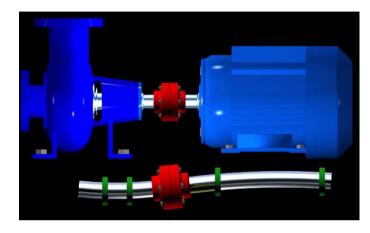
SBILANCIAMENTO

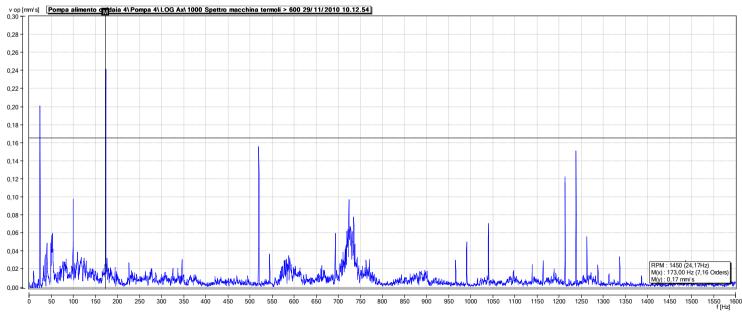




Gruppo motore ventilatore trasmissione a cinghia

• TURBOLENZA





Gruppo motore pompa con giunto rigido

- DISALLINEAMENTO
- ANOMALIE MOTORI ELETTRICI

Gruppo motore pompa con giunto rigido

• RISONANZE STRUTTURALI

 Basamenti con risonanze attorno ai 10-35 Hz – giusto nel range operativo delle pompe

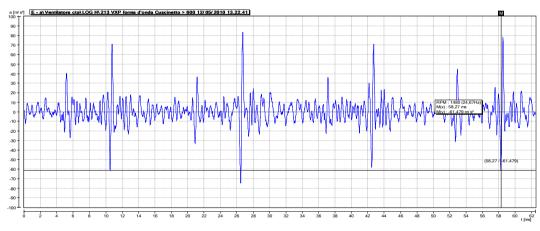
Gruppo motore pompa con giunto rigido

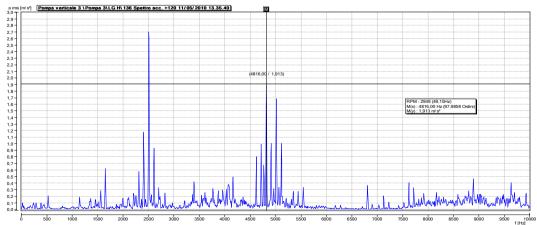
- RISONANZE STRUTTURALI
 - Una soluzione è riempire le basi di cemento e separare fondazioni comuni:



Gruppo motore ventilatore

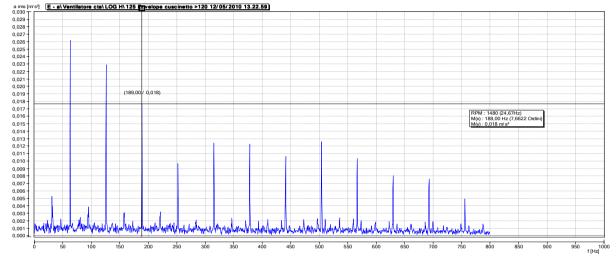
- DEBOLEZZA STRUTTURALE
- Le pompe a sbalzo sono soggette a oscillazioni verticali/assiali alte vibrazioni in direzione verticale
- Soluzione: aggiungere un supporto sotto la flangia

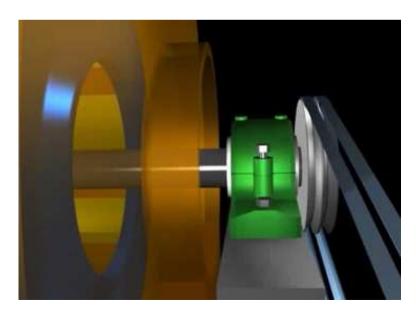


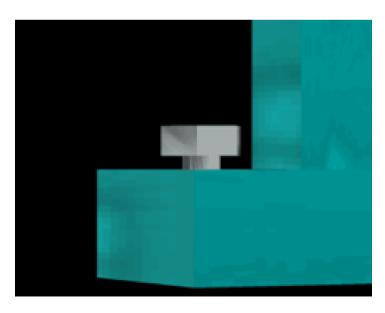


Gruppo motore ventilatore

• CUSCINETTO GUASTO

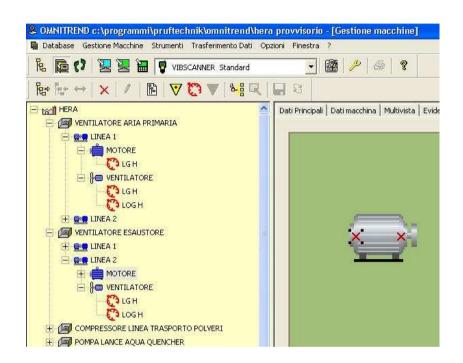


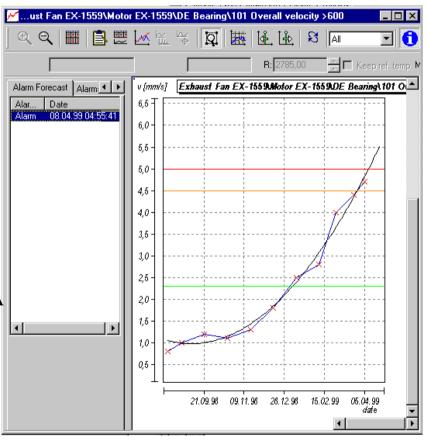




Gruppo motore ventilatore

• ALLENTAMENTI

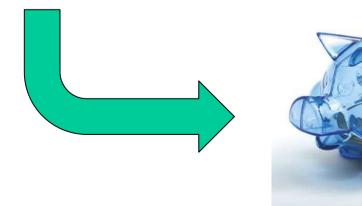




GESTIONE DATI

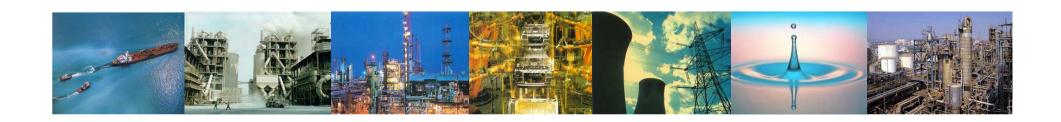
- CREAZIONE DI TREND
- GESTIONE EVENTI E STORICO MACCHINA
- REPORTISTICA E ANALISI IN REMOTO

- DIVERSI MODALITA' DI ANALISI
- DIAGNOSI SU MOLTEPLICI COMPONENTI
- MONITORAGGIO CON SOGLIE DI ALLARME



PERCHE' PRUFTECHNIK

- ASSOLUTA AUTONOMIA: MANUTENZIONE "FATTA IN CASA"
- SEMPLICE UTILIZZO DELLA STRUMENTAZIONE
- BREVI TEMPI DI ACQUISIZIONE DATI



Sviluppo e produzione di strumenti per

- ALLINEAMENTO LASER
- VIBRAZIONI
- CONTROLLI NON DISTRUTTIVI

Necessari per introdurre la filosofia della manutenzione predittiva.....

